1769 Weigh Scale Module

Model HM1525

Instruction Manual

FEBRUARY 2004
Solid state equipment has operational characteristics differing from those of electromechanical equipment. “Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls” (Allen-Bradley Publication SGI-1.1) describes some important differences between solid state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will the Allen-Bradley Company or Helm Instrument Company be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, the Allen-Bradley Company or Helm Instrument Company cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Allen-Bradley Company or Helm Instrument Company with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of the Allen-Bradley Company and Helm Instrument Company is prohibited.

Throughout this manual we use note to make you aware of safety considerations.

ATTENTION: Identifies information about practices or circumstances that can lead to property damage. Identifies information that is especially important for successful application and understanding of the product.

ATTENTION: Please check power supply ratings before proceeding! Each tonnage module consumes (+24, 50mA +5, 66mA). Be sure to not overload the power supply.
Table of Contents

Preface... P-1
Who Should Use this Manual.................................P-1
Purpose of this Manual ..P-1
Contents of this ManualP-2
Related DocumentationP-3
Terms and AbbreviationsP-4
Common Techniques Used in this ManualP-5
Product Support ..P-5
Your Questions or Comments on this ManualP-5

Overview

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-1</td>
</tr>
<tr>
<td>Components</td>
<td>1-1</td>
</tr>
<tr>
<td>Strain Gain Transducer Operation</td>
<td>1-1</td>
</tr>
<tr>
<td>Hardware Overview</td>
<td>1-2</td>
</tr>
</tbody>
</table>

Getting Started

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2-1</td>
</tr>
<tr>
<td>Getting Started</td>
<td>2-1</td>
</tr>
<tr>
<td>Required Tools and Equipment</td>
<td>2-1</td>
</tr>
<tr>
<td>System Operation</td>
<td>2-2</td>
</tr>
<tr>
<td>Sensor Wiring</td>
<td>2-2</td>
</tr>
</tbody>
</table>

Channel Configuration, Data and Status

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3-1</td>
</tr>
<tr>
<td>Channel Configuration, Data and Status</td>
<td>3-1</td>
</tr>
<tr>
<td>Module Addressing</td>
<td>3-1</td>
</tr>
<tr>
<td>Module Configuration</td>
<td>3-1</td>
</tr>
<tr>
<td>Data Table Memory Map</td>
<td>3-1</td>
</tr>
<tr>
<td>Output Image</td>
<td>3-1</td>
</tr>
<tr>
<td>Input Image</td>
<td>3-3</td>
</tr>
<tr>
<td>Integer File</td>
<td>3-5</td>
</tr>
</tbody>
</table>
Table of Contents

Initial Setup Procedures

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4-1</td>
</tr>
<tr>
<td>Initial Setup Procedures</td>
<td>4-1</td>
</tr>
<tr>
<td>Step 1. Balance Sensor Input</td>
<td>4-1</td>
</tr>
<tr>
<td>Step 2. Set Calibration Numbers</td>
<td>4-2</td>
</tr>
</tbody>
</table>

System Trouble-Shooting Guide

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5-1</td>
</tr>
<tr>
<td>HT-400 Sensor Ohm Reading</td>
<td>5-1</td>
</tr>
<tr>
<td>Block Diagrams</td>
<td>5-2</td>
</tr>
<tr>
<td>Trim Jumper Setting</td>
<td>5-2</td>
</tr>
<tr>
<td>PLC Ladder Logic</td>
<td>5-3</td>
</tr>
</tbody>
</table>
Preface

Read this preface to familiarize yourself with the rest of this manual. This preface covers the following topics:

- who should use this manual
- the purpose of this manual
- terms and abbreviations
- conventions used in this manual
- Allen-Bradley support

Who Should Use this Manual

Use this manual if you are responsible for the design, installation, programming, or maintenance of an automation control system that used Allen-Bradley small logic controllers.

You should have a basic understanding of SLC 500 products. You should understand electronic process control and be able to interpret the ladder logic instructions required to generate the electronic signals that control your application. If you do not, contact your local Allen-Bradley representative for the proper training before using this product.

Purpose of This Manual

This manual is a learning and reference guide for the Helm Weigh Scale Module. It contains the information you need to install, wire, and use the module.
Contents of this Manual

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preface</td>
<td>Describes the purpose, background, and scope of this manual. Also specifies the audience for whom this manual is intended and defines key terms and abbreviations used throughout this book.</td>
</tr>
<tr>
<td>1</td>
<td>Overview</td>
<td>Provides a hardware and system overview. Explains and illustrates the components of the system.</td>
</tr>
<tr>
<td>2</td>
<td>Installation and Wiring</td>
<td>Provides installation information and wiring guidelines.</td>
</tr>
<tr>
<td>3</td>
<td>Channel Configuration, Data and Status</td>
<td>Examines the channel configuration and the channel status word, and explains how the module uses configuration data and generates status during operation.</td>
</tr>
<tr>
<td>4</td>
<td>Ladder Programming Examples</td>
<td>Gives an example of the ladder logic required to define the channel for operation. Also includes representative examples for unique requirements such as sample count, trend calculation, etc.</td>
</tr>
<tr>
<td>5</td>
<td>Troubleshooting</td>
<td>Explains how to interpret and correct problems that occur while using the load module.</td>
</tr>
<tr>
<td>A</td>
<td>Specifications</td>
<td>Provides physical, electrical, Environmental, and functional Specifications for the module.</td>
</tr>
<tr>
<td>B</td>
<td>Ladder Program</td>
<td></td>
</tr>
</tbody>
</table>
The following documents contain information that may be helpful to you as you use Allen-Bradley SLC products. To obtain a copy of any of the Allen-Bradley documents listed, contact your local Allen-Bradley office or distributor.

<table>
<thead>
<tr>
<th>For</th>
<th>Read this Document</th>
<th>Document Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>An overview for the MicroLogix™ Programmable Controllers</td>
<td>MicroLogix 1500 Programmable Controllers</td>
<td>1764-UM001A-US-P</td>
</tr>
<tr>
<td>A description on how to install and use your MicroLogix Programmable Controller</td>
<td>MicroLogix 1500 Programmable Controller Base Units Installation Instructions and Wiring Diagrams</td>
<td>1764-IN001A-ML-P</td>
</tr>
<tr>
<td>A description on how to install the processor into the MicroLogix 1500 Base unit.</td>
<td>MicroLogix 1500 Processor Installation Instructions</td>
<td>1764-IN002A-ML-P</td>
</tr>
<tr>
<td>Selecting Discrete Input/Output Modules</td>
<td>Compact Discrete Input/Output Modules Technical Data</td>
<td>1769-2.1</td>
</tr>
<tr>
<td>View power usage of expansion modules to determine power supply requirements</td>
<td>Expansion Modules System Qualifier</td>
<td>RA Website Download</td>
</tr>
<tr>
<td>End Cap Installation</td>
<td>Compact I/O End Caps/Terminators Installation Instructions</td>
<td>1769-5.16</td>
</tr>
<tr>
<td>A complete listing of current Automation Group documentation, including ordering instructions. Also indicates whether the documents are available on CD-ROM or in multi-languages</td>
<td>Automation Group Publication Index</td>
<td>SD499</td>
</tr>
<tr>
<td>A glossary of industrial automation terms and abbreviations</td>
<td>Allen-Bradley Industrial Automation Glossary</td>
<td>ICCG-7.1</td>
</tr>
<tr>
<td>An article on wire sizes and types for grounding electrical equipment</td>
<td>National Electrical Code</td>
<td>Published by the National Fire Protection Association of Boston, MA.</td>
</tr>
</tbody>
</table>
The following terms and abbreviations are used throughout this manual. For definitions of terms not listed here refer to Allen-Bradley’s Industrial Automation Glossary, Publication ICCG-7.1.

Calibration - Procedure, performed by trained personnel, where machine or press is dynamically loaded to impact on load cells. A process of linearity measuring to determine the loading capacity of the machine.

Calibration Number - Amplification values established during machine calibration or pre-assigned on force load cells.

Channel - Refers to one of two, strain gage inputs available on the modules terminal block.

Chassis - A hardware assembly that houses devices such as I/O modules, adapter modules, processor modules, and power supplies.

Configuration Word - Contains the channel configuration information needed by the module to configure and operate each channel. Information is written to the configuration word through the logic supplied in your ladder program.

Data Word - A 16-bit integer that represents the value of the analog input channel. The channel data word is valid only when the channel is enabled.

Gain - Amplification of an input signal.

Load/Force - Measurement of impact during a machine cycle. Sensors provide the input for this measurement.

LSB - (Least Significant Bit) Refers to a data increment defined as the full scale range divided by the resolution. The bit that represents the smallest value within a string of bits.

Remote Configuration - A control system where the chassis can be located several thousand feet from the processor chassis.

Resolution - The smallest detectable change in a measurement, typically expressed in engineering units (e.g. 0.15C) or as a number of bits. For example a 12-bit system has 4,096 possible output states. It can therefore measure 1 part in 4096.

Sample - Load/force values established from a series of machine cycles. Also defined as benchmark.

Sampling time - The time required by the A/D converter to sample an input channel.

Scale - Value used to describe the press/machine overall tonnage. Set for maximum value of one channel. For example, settings for a 150 ton press = 75.

Status Word - Contains status information about the channel's current configuration and operational state. You can use this information in your ladder program to determine whether the channel data word is valid.

Update Time - The time required for the module to sample and convert the input signals of all enables input channels and make the resulting data values available to the SLC processor.
Common Techniques Used in this Manual

The following conventions are used throughout this manual:

- Bulleted lists such as this one provide information, not procedural steps.
- Numbered lists provide sequential steps or hierarchical information.

Product Support

Contact your Helm representative or call Helm direct at 419-893-4356:

- sales and order support
- product technical training
- warranty support
- support service agreements

Your Questions or Comments on this Manual

If you have any suggestions for how this manual could be made more useful to you, please send us your ideas.
Overview

You have just purchased the most advanced load monitoring solution available. HELM INSTRUMENT COMPANY, INC. manufactures a complete line of load monitoring control solutions for use on metal stamping, forging, compaction and assembly presses; cold forming, cold heating, injection molding and die cast machines.

Standard or custom transducers and load cells are available for in-die monitoring of transfer or progressive tooling.

At HELM, quality is inherent not only in the design of our products but in the attitudes of our employees as well. We’re working together to give you the best. After all, that’s what our business is all about - providing innovative instrumentation to help make your manufacturing process more productive and your operation more effective.

The Helm Weigh Scale combines machine and tooling monitoring with programmable limit switch function. User programmable high and low limits protect the machine and tooling to ensure part quality.

Critical setup information can be stored and uploaded as part of a die recipe program. An optional resolver input module is used to compare machine/press tonnage to crank angle for real time signature analysis.

Components

The Helm Weigh Scale module is attached to the controller or to an adjacent I/O module on the din rail. The system is comprised of two parts; the input module and two Helm Strain gage based sensors.

Strain Gain Transducer Operation

The primary part of the load monitoring system centers around the measurement. The basic function of the Helm Strain Gain sensor is to detect the amount of deflection imposed on the press or die as parts are being formed. All Strain Gain sensors are matched to within 1% and therefore can be replaced without recalibration of the machine.

The Helm Strain Gain sensors can be mounted to strategic high stress areas of the machine frame or strategically located in tooling or applied to stop blocks. Signals from these sensors are routed to the Weigh Scale module for processing. The Helm Strain Gage is capable of measuring either a tension or compression signal.
Chapter 1

Hardware Overview

The Weigh Scale module can be attached to the controller or to an adjacent I/O module before or after din rail mounting. It is a Class 1 module (uses eight input words and eight output words). It interfaces to strain gage based transducers (350ohm or 700ohm).

The module can accept input from two sensors. The module has no output channels. Module configuration requires manual and user programmable setup.

The Weigh Scale module receives and stores digitally converted analog data into its image table for retrieval by processor. The module supports connections from any combination of up to two strain gage sensors.

Any combination of Helm Strain Gage sensors can be used. Contact Helm for additional information on the type and application of different sensor options.
This chapter can help you to get started using the Helm Weigh Scale module. The procedures included here assume that you have a basic understanding of PLC products. You should understand electronic process control and be able to interpret the ladder logic instructions required to generate the electronic signals that control your application.

Because it is a start-up guide, this chapter does not contain detailed explanations about the procedures listed. It does, however, reference other chapters in this book where you can get more information about applying the procedures described in each step. It also references other SLC documentation that may be helpful if you are unfamiliar with programming techniques or system installation requirements.

If you have any questions or are unfamiliar with the terms used or concepts presented in the procedural steps, always read the referenced chapters and other recommended documentation before trying to apply the information.

This chapter will:

- Tell you what equipment you need
- Explain how to install and wire the module
- Show you how to set channels for the sensor input

Required Tools and Equipment

Have the following tools and equipment ready:

- Small blade screwdriver
- Appropriate strain gage cable
- Programming equipment (All programming examples shown in this manual demonstrate the use of Allen-Bradley’s RS Logix 500.)
System Operation

The Weigh Scale module communicates to the processor through the parallel backplane interface and receives +5Vdc and +24Vdc power from the power supply through the backplane. No external power supply is required. The MicroLogix and CompactLogix platforms can support up to 8 I/O modules. You may install up to 3 Weigh Scale modules using the base power supply. An additional power supply can be added to support more than 3 modules. Refer to publication 17864-UM100A-US-P for information on expansion power supply systems.

Each individual channel on the module can receive input signals from strain gage based sensors. The module converts the analog values directly into digital values.

Sensor Wiring

The sensors are wired to the modules using the rightmost bank of inputs. The pin-out is shown below.

To ensure proper operation and high immunity to electrical noise, always use Helm strain gage cable.

To limit noise, keep strain gage cable as far away as possible from power and load lines.

The module can support up to two sensor inputs DO NOT attempt to parallel additional gages as you will cause damage to the module and void product warranty.
This chapter explains how the Weigh Scale module and the processor communicate through the module's input and output image.

For CompactLogix / RSLogix™ 5000 setup, please refer to Appendix A

With RS Logix500 software, verify the module ID code.

Expansion General Configuration

Vendor ID = 3
Product Type = 9
Product Code = 1
Series/Major Rev/Minor Rev = D

No special I/O configuration (SPIO CONFIG) information is required. The module ID code automatically assigns the correct number of input and output words. The following memory map shows how the output and input image tables are defined.

Output Image

The 8 word output image (output from the CPU to the module) contains Information that you configure to define the way a specific channel will work. Example – If you want to configure channel 2 on the module located in slot 4 in the SLC chassis, your address would be O:4.2.

(o = file type : =element delimiter 4=slot .=word delimiter 2=word)

Bit Reserved O:e.0/0
Bit Reserved O:e.0/1
Bit Reserved O:e.0/2
Bit Zero Stabilize 0=Off 1=On O:e.0/3
Bit LSD Flicker 0=Off 1=On O:e.0/4
Bit Vibration Filter 0=Off 1=On O:e.0/5
Bit Channel 2 Trim O:e.0/6
Bit Coarse Zero Up Adjust O:e.0/7
Bit Channel 1 Trim O:e.0/8
Bit Reserved O:e.0/9
Bit Reserved O:e.0/10
Bit Reserved O:e.0/11
Bit Coarse Zero Down Adjust O:e.0/12
Bit Clear Tare O:e.0/13
Bit Tare O:e.0/14
Bit Channel Toggle 0=CH1 1=CH2 O:e.0/15
Integer Channel 1 Scale value O:e.1
Integer Channel 1 mV/V Setting O:e.2
Integer Channel 1 A/D Trim Setting O:e.3
Integer Channel 2 mV/V Setting O:e.4
Integer Channel 2 A/D Trim Setting O:e.5
Integer A/D Samples Setting O:e.6
Integer Channel 2 Scale value O:e.7
Zero Stabilize Bit (O:e/3)
Enables module feature to display “0” when Weigh scale is empty.
0 = Disable 1 = Enable

Least Significant Bit (LSD) Flicker Bit (O:e/4)
LSD of weigh value. Does not change when load is applied or if load is constant.

Vibration Filter Bit (O:e/5)
Enables vibration filter to cancel out load variation due to vibration of product weighed.
0 = Disable 1 = Enable

Channel 2 Trim Bit (O:e/6)
Factory set bit to load Channel 2 trim value into module (Not for end user)

Coarse Zero Up Adjust Bit (O:e/7)
Used to increase offset of amplifier to set to range of A/D.

Channel 1 Trim Bit (O:e/8)
Factory set bit to load Channel 1 trim value into module (Not for end user)

Coarse Zero Down Adjust Bit (O:e/12)
Used to decrease offset of amplifier to set to range of A/D.

Clear Tare Bit (O:e/13)
Resets or removes tare value from module. (Used to initially setup module)

Tare Bit (O:e/14)
Sets weigh value to zero.

Channel Toggle Bit (O:e/15)
Used to switch from Channel 1 to Channel 2 when setting up channels.

Channel 1 Scale Value (Integer Word O:e.1)
Value of scale from capacity of load cell for Channel 1.

Channel 1 mV/V Setting (Integer Word O:e.2)
4 digit mV/V setting from load cell mV/V specification.

Channel 1 A/D Trim Setting (Integer Word O:e.3)
Factory set trim value for Channel 1. (Not for end user)

Channel 2 mV/V Setting (Integer Word O:e.4)
4 digit mV/V setting from load cell mV/V specification.

Channel 2 A/D Trim Setting (Integer Word O:e.5)
Factory set trim value for Channel 2. (Not for end user)

A/D Samples Setting (Integer Word O:e.6)
Sets number of samples (for averaging) of weigh value. (0-1000)

Channel 2 Scale Value (Integer Word O:e.7)
Value of scale from capacity of load cell for Channel 2.
The 8-word module input image (input from the module to the CPU) represents data words and status words. Input words (data words) hold the input data that represents the values of the sensor inputs. Input words (status bits) contain the various status conditions and reflect the configuration settings you have entered into the output configuration words.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Reserved</th>
<th>I:e.0/0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit</td>
<td>Trim Mode</td>
<td>I:e.0/1</td>
</tr>
<tr>
<td>Bit</td>
<td>Reserved</td>
<td>I:e.0/2</td>
</tr>
<tr>
<td>Bit</td>
<td>Reserved</td>
<td>I:e.0/3</td>
</tr>
<tr>
<td>Bit</td>
<td>Reserved</td>
<td>I:e.0/4</td>
</tr>
<tr>
<td>Bit</td>
<td>Reserved</td>
<td>I:e.0/5</td>
</tr>
<tr>
<td>Bit</td>
<td>Reserved</td>
<td>I:e.0/6</td>
</tr>
<tr>
<td>Bit</td>
<td>Channel 1 Sign Bit</td>
<td>I:e.0/14</td>
</tr>
<tr>
<td>Bit</td>
<td>Channel 2 Sign Bit</td>
<td>I:e.0/15</td>
</tr>
<tr>
<td>Integer</td>
<td>Channel 1 Weigh Value</td>
<td>I:e.1</td>
</tr>
<tr>
<td>Integer</td>
<td>Channel 2 Weigh Value</td>
<td>I:e.2</td>
</tr>
<tr>
<td>Integer</td>
<td>Channel 1 A/D Trim Value</td>
<td>I:e.3</td>
</tr>
<tr>
<td>Integer</td>
<td>Reserved</td>
<td>I:e.4</td>
</tr>
<tr>
<td>Integer</td>
<td>Channel 2 A/D Trim Value</td>
<td>I:e.5</td>
</tr>
<tr>
<td>Integer</td>
<td>Communication Fault Counter</td>
<td>I:e.6</td>
</tr>
<tr>
<td>Integer</td>
<td>Reserved</td>
<td>I:e.7</td>
</tr>
</tbody>
</table>

Calibrate Mode Bit (I:e/1)
If set, module is in trim mode. Bit should always be clear.

Channel 1 Sign Bit (I:e/14)
If Channel 1 signal is positive value, Bit = 0 and negative value Bit = 1.

Channel 2 Sign Bit (I:e/15)
If Channel 2 signal is positive value, Bit = 0 and negative value Bit = 1.
Channel 1 Weigh Value (I:e.1)
Weigh value for Channel 1

Channel 2 Weigh Value (I:e.2)
Weigh value for Channel 2.

Channel 1 A/D Trim Value (I:e.3)
Value stored in module for Channel 1. Value should match value on sticker.

Channel 2 A/D Trim Value (I:e.5)
Value stored in module for Channel 2. Value should match value on sticker.

Communication Fault Counter (I:e.6)
Used to troubleshoot noise or ground loops. Associated with module faults to PLC. Counter value should always be zero.
Integer File

Using RS Logix500 software, reserve an integer file for Weigh Module monitoring.

For illustration purposes in this manual, we have reserved Integer file N10:0 - N10:16.

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit</td>
<td>Channel 1 Sign Bit</td>
<td>N10:0/2</td>
</tr>
<tr>
<td>Bit</td>
<td>Channel 2 Sign Bit</td>
<td>N10:0/3</td>
</tr>
<tr>
<td>Integer</td>
<td>Faults</td>
<td>N10:2</td>
</tr>
<tr>
<td>Integer</td>
<td>Channel 1 A/D Trim</td>
<td>N10:5</td>
</tr>
<tr>
<td>Integer</td>
<td>Channel 2 A/D Trim</td>
<td>N10:6</td>
</tr>
<tr>
<td>Integer</td>
<td>Channel 1 Weigh Value</td>
<td>N10:8</td>
</tr>
<tr>
<td>Integer</td>
<td>Channel 2 Weigh Value</td>
<td>N10:9</td>
</tr>
<tr>
<td>Bit</td>
<td>Up Button</td>
<td>N10:16/1</td>
</tr>
<tr>
<td>Bit</td>
<td>Channel 2 A/D Trim Set Bit</td>
<td>N10:16/2</td>
</tr>
<tr>
<td>Bit</td>
<td>Down Button</td>
<td>N10:16/3</td>
</tr>
<tr>
<td>Bit</td>
<td>Channel 1 A/D Trim Set Bit</td>
<td>N10:16/4</td>
</tr>
<tr>
<td>Bit</td>
<td>Reset Zero</td>
<td>N10:16/9</td>
</tr>
<tr>
<td>Bit</td>
<td>Tare/Zero Button</td>
<td>N10:16/12</td>
</tr>
<tr>
<td>Bit</td>
<td>Channel Toggle Bit 0=CH1 1=CH2</td>
<td>N10:16/13</td>
</tr>
</tbody>
</table>
A complete listing of a sample ladder logic program is included at the back of this manual. Examples shown here are for reference.

All values are 0 (default) on initial start-up. This means that all alarms are disabled. You must make the following adjustments for proper operation:

- Balance sensor input(s)
- Set Calibration numbers

Step 1. Balance Sensor Input.

1. Set mV/V to 2000.
2. Set Scale to 10000.
3. Press Clear Tare pushbutton.
4. Use Up and Down buttons to set amplifier to low range of A/D (20,000 counts)
5. Press Zero/Tare pushbutton.

Step 2. Set Calibration Numbers

1. Set Scale to capacity of load cell.
2. Set mV/V to load cell specification.
3. Example:
 - 100 ton load cell, 2.025 mV/V
 - For scale set, enter 100
 - For mV/V set, enter 2025
System
Troubleshooting
Guide

HT-400 Sensor Ohm Readings

<table>
<thead>
<tr>
<th>Color Combination</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green-Black</td>
<td>350 ohms</td>
</tr>
<tr>
<td>Red-White</td>
<td>350 ohms</td>
</tr>
<tr>
<td>All other color combos</td>
<td>266 ohms</td>
</tr>
<tr>
<td>All colors to Ground</td>
<td>open</td>
</tr>
<tr>
<td>Shield to Ground</td>
<td>open</td>
</tr>
</tbody>
</table>

Electrical Specifications:

- **Type of input**: Strain Gage (350 ohm, 700 ohm)
- **Input Impedance**: 10k
- **Display Resolution**: Up to 0.0025% of full scale
- **Overall Module Accuracy**: 0.01% of full scale
- **Module Update Time**: 10 µsec
- **Number of Channels**: 2 (isolated)
- **A/D Conversion Method**: Successive Approximation - 16 bit
- **Normal Mode Rejection**: 116dB CMRR
- **Amplifier Bandwidth**: 200 kHz
- **Calibration**: Software Selectable
- **Isolation**: 500 VDC continuous between inputs and chassis ground, and between input and backplane
- **LED indicators**: 2 LED’s for Power and Alarm
- **Recommended Cable**: Strain Gage Cable (Helm part number 6117)
- **Terminal Strip**: 16-pin removable
- **Operating Temperatures**: 0°C to 60°C (32°F to 140°F)
- **Hazardous Environment Classification**: Class 1 Division 2 Hazardous Environment

Trim Jumper

Located at Bottom Left Corner of Module

Black Jumper

Factory Jumper. Removing this jumper will cause module to become unstable.
Hm1525.rss

LAD 2 - --- Total Rungs in File = 21

0007

MMI
CHANNEL 2
WEIGH VALUE
MOV
Move
Source
1:1.2
2000<
Dest
N10:9
2000<

0008

MMI
COARSE ZERO
UP PUSHBUTTON
N10:16
1

COARSE ZERO
UP ADJUST
O:1

OTHER
7

0009

MMI
COARSE ZERO
DOWN PUSHBUTTON
N10:16
3

COARSE ZERO
DOWN ADJUST
O:1

OTHER
12

0010

MMI
CLEAR TARE
PUSHBUTTON
N10:16
9

CLEAR TARE
PUSHBUTTON
O:1

OTHER
13

0011

MMI
TARE
PUSHBUTTON
N10:16
12

TARE
PUSHBUTTON
O:1

OTHER
14

0012

MMI
CHANNEL 1/2
TOGGLE BIT
0=CHANNEL 1
1=CHANNEL 2
N10:16
13

CHANNEL 1/2
TOGGLE BIT
0=CHANNEL 1
1=CHANNEL 2
O:1

OTHER
15

0013

MMI
VIBRATION
FILTER ON/OFF
TOGGLE
N10:21
6

VIBRATION
FILTER ON/OFF
O:1

OTHER
5
APPENDIX A – Module Properties RSLogix™5000

Module Properties - Local 1 (1769-MODULE 1.1)

General
Type: 1769-MODULE Generic 1769 Module
Parent: Local
Name: Winch
Description:
Comm Format: Data - INT
Slot: 1
Status: Offline

Connection Parameters
Assembly Instance: 101
Size: 8
Input: 101
Output: 100
Configuration: 102
Size: 8

Requested Packet Interval (RI): 2.00 ms
Inhibit Module
Major Fault On Controller If Connection Fails While in Run Mode
Module Fault

Status: Offline
OK Cancel Apply Help
MOVE SAMPLE SETPOINT FROM MMI SCREEN TO MODULE

MOVE SCALE SETPOINTS FROM MMI SCREEN TO MODULE

MOVE MV/V SETPOINTS FROM MMI SCREEN TO MODULE
TOGGLE VIBRATION FILTER, ZERO STABILIZE, FLICKER OFF/ON CONTROL FROM MMI SCREEN TO MODULE

VIBRATION FILTER OFF/ON TOGGLE
HM1525_CONTROL[0].0
Local:1:O.Data[0].5

ZERO STABLE OFF/ON TOGGLE
HM1525_CONTROL[0].1
Local:1:O.Data[0].3

LSD FLICKER OFF/ON TOGGLE
HM1525_CONTROL[0].2
Local:1:O.Data[0].4

COURSE ZERO UP, COURSE ZERO DOWN, CLEAR TARE, TARE, CHANNELS 1/2 PUSHBUTTONS FROM MMI SCREEN TO MODULE

COURSE ZERO UP PUSHBUTTON
HM1525_CONTROL[0].3
WEIGH MODULE COURSE ZERO UP ADJUST
ONE_SHOTS.0
Local:1:O.Data[0].7

COURSE ZERO DOWN PUSHBUTTON
HM1525_CONTROL[0].4
WEIGH MODULE COURSE ZERO DOWN ADJUST
ONE_SHOTS.1
Local:1:O.Data[0].12

CLEAR TARE PUSHBUTTON
HM1525_CONTROL[0].5
WEIGH MODULE CLEAR TARE
Local:1:O.Data[0].13

TARE PUSHBUTTON
HM1525_CONTROL[0].6
WEIGH MODULE TARE
Local:1:O.Data[0].14

CHANNELS 1/2 TOGGLE BIT
HM1525_CONTROL[0].7
WEIGH MODULE CHANNELS 1/2 TOGGLE
0=CH1 1=CH2
Local:1:O.Data[0].15

CHANNELS 1 AND 2 DATA SIGN BITS FROM MODULE TO MMI SCREEN

WEIGH MODULE CHANNEL 1 SIGN BIT
Local:1:I.Data[0].14
MMI CHANNEL 1 SIGN BIT STATUS
HM1525_STATUS[0].0

WEIGH MODULE CHANNEL 2 SIGN BIT
Local:1:I.Data[0].15
MMI CHANNEL 2 SIGN BIT STATUS
HM1525_STATUS[0].1
CHANNELS 1 AND 2 WEIGH VALUES FROM MODULE TO MMI SCREEN

MMI WEIGH MODULE
CHANNEL 1 WEIGH
VALUE
MOV

Move
Source: Local:1.I.Data[1]
Dest: HM1525_STATUS[1]
207

MMI WEIGH MODULE
CHANNEL 2 WEIGH
VALUE
MOV

Move
Dest: HM1525_STATUS[2]
206