Installation Instructions
HM2085-WM
Weigh Scale Module

October, 2016

Process Control Systems, Instruments and Transducers
Visit our Web Site at http://www.helminstrument.com or email us at sales@helminstrument.com
Solid state equipment has operational characteristics differing from those of electromechanical equipment. “Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls” (Allen-Bradley Publication SGI-1.1) describes some important differences between solid state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will the Allen-Bradley Company or Helm Instrument Company be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, the Allen-Bradley Company or Helm Instrument Company cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Allen-Bradley Company or Helm Instrument Company with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of the Allen-Bradley Company and Helm Instrument Company is prohibited.

Throughout this manual we use note to make you aware of safety considerations.

**ATTENTION:** Identifies information about practices or circumstances that can lead to property damage. Identifies information that is especially important for successful application and understanding of the product.

Attentions help you:
- identify a hazard
- avoid the hazard
- recognize the consequences

**ATTENTION:** Please check power supply ratings before proceeding! Each module consumes (+24, 50mA +5, 66mA). Be sure to not overload the power supply.
Read this preface to familiarize yourself with the rest of this manual. This preface covers the following topics:

- who should use this manual
- the purpose of this manual
- terms and abbreviations
- conventions used in this manual
- Allen-Bradley support

Use this manual if you are responsible for the design, installation, programming, or maintenance of an automation control system that used Allen-Bradley small logic controllers.

You should understand electronic process control and be able to interpret the ladder logic instructions required to generate the electronic signals that control your application. If you do not, contact your local Allen-Bradley representative for the proper training before using this product.

This manual is a learning and reference guide for the Helm Weigh Scale Module. It contains the information you need to install, wire, and use the module.
Terms and Abbreviations

The following terms and abbreviations are used throughout this manual. For definitions of terms not listed here refer to Allen-Bradley’s Industrial Automation Glossary, Publication ICCG-7.1.

**Calibration** - Procedure, performed by trained personnel, where machine or press is dynamically loaded to impact on load cells. A process of linearity measuring to determine the loading capacity of the machine.

**Calibration Number** - Amplification values established during machine calibration or pre-assigned on force load cells.

**Channel** - Refers to one of two, strain gage inputs available on the modules terminal block.

**Chassis** - A hardware assembly that houses devices such as I/O modules, adapter modules, processor modules, and power supplies.

**Configuration Word** - Contains the channel configuration information needed by the module to configure and operate each channel. Information is written to the configuration word through the logic supplied in your ladder program.

**Data Word** - A 16-bit integer that represent the value of the analog input channel. The channel data word is valid only when the channel is enabled.

**Gain** - Amplification of an input signal.

**Load/Force** - Measurement of impact during a machine cycle. Sensors provide the input for this measurement.

**LSB** - (Least Significant Bit) Refers to a data increment defined as the full scale range divided by the resolution. The bit that represents the smallest value within a string of bits.

**Remote Configuration** - A control system where the chassis can be located several thousand feet from the processor chassis.

**Resolution** - The smallest detectable change in a measurement, typically expressed in engineering units (e.g. 0.15C) or as a number of bits. For example a 12-bit system has 4,096 possible output states. It can therefore measure 1 part in 4096.

**Sample** - Load/force values established from a series of machine cycles. Also defined as benchmark.

**Sampling time** - The time required by the A/D converter to sample an input channel.

**Scale** - Value used to describe the press/machine overall tonnage. Set for maximum value of one channel. For example, settings for a 150 ton press = 75.
**Status Word** - Contains status information about the channel's current configuration and operational state. You can use this information in your ladder program to determine whether the channel data word is valid.

**Update Time** - The time required for the module to sample and convert the input signals of all enables input channels and make the resulting data values available to the SLC processor.

The following conventions are used throughout this manual:

- Bulleted lists such as this one provide information, not procedural steps.
- Numbered lists provide sequential steps or hierarchical information.

Contact your Helm representative or call Helm direct at 419-893-4356:

- sales and order support
- product technical training
- warranty support
- support service agreements

Your Questions or Comments on this Manual

If you have any suggestions for how this manual could be made more useful to you, please send us your ideas.
You have just purchased the most advanced load monitoring solution available. HELM INSTRUMENT COMPANY, INC. manufactures a complete line of load monitoring control solutions for use on metal stamping, forging, compaction and assembly presses; cold forming, cold heating, injection molding and die cast machines.

Standard or custom transducers and load cells are available for in-die monitoring of transfer or progressive tooling.

At HELM, quality is inherent not only in the design of our products but in the attitudes of our employees as well. We're working together to give you the best. After all, that’s what our business is all about - providing innovative instrumentation to help make your manufacturing process more productive and your operation more effective.

The Helm Weigh Scale combines machine and tooling monitoring with programmable limit switch function. User programmable high and low limits protect the machine and tooling to ensure part quality.

Critical setup information can be stored and uploaded as part of a die recipe program. An optional resolver input module is used to compare machine/press tonnage to crank angle for real time signature analysis.

The Helm Weigh Scale module is attached to the controller or to an adjacent I/O module on the din rail. The system is comprised of two parts; the input module and strain gage based sensors and load cells.

The Weigh Scale module can be attached to the controller or to an adjacent I/O module before or after din rail mounting. It is a Class 1 module (uses eight input words and eight output words). It interfaces to strain gage based transducers (350ohm or 700ohm).

The module can accept input from two sensors. The module has no output channels. Module configuration requires manual and user programmable setup.

The Weigh Scale module receives and stores digitally converted analog data into its image table for retrieval by processor. The module supports connections from any combination of up to two strain gage sensors.

Any combination of Helm Strain Gage sensors can be used. Contact Helm for additional information on the type and application of different sensor options.
This chapter can help you to get started using the Helm Weigh Scale module. The procedures included here assume that you have a basic understanding of PLC products. You should understand electronic process control and be able to interpret the ladder logic instructions required to generate the electronic signals that control your application.

Because it is a start-up guide, this chapter does not contain detailed explanations about the procedures listed. It does, however, reference other chapters in this book where you can get more information about applying the procedures described in each step.

If you have any questions or are unfamiliar with the terms used or concepts presented in the procedural steps, always read the referenced chapters and other recommended documentation before trying to apply the information.

This chapter will:

- Tell you what equipment you need
- Explain how to install and wire the module
- Show you how to set channels for the sensor input

**Required Tools and Equipment**

Have the following tools and equipment ready:

- Small blade screwdriver
- Appropriate strain gage cable
- Programming equipment
**HM2085 Weigh Scale Module**

**System Operation**

The Weigh Scale module communicates to the processor through the parallel backplane interface and receives +5Vdc and +24Vdc power from the power supply through the backplane. No external power supply is required. The MicroLogix and CompactLogix platforms can support up to 8 I/O modules. You may install up to 3 Weigh Scale modules using the base power supply. An additional power supply can be added to support more than 3 modules.

Each individual channel on the module can receive input signals from strain gage based sensors. The module converts the analog values directly into digital values.

**Sensor Wiring**

The sensors are wired to the modules using the rightmost bank of inputs. The pin-out is shown below.

To ensure proper operation and high immunity to electrical noise, always use Helm strain gage cable.

To limit noise, keep strain gage cable as far away as possible from power and load lines.

The module can support up to two sensor inputs.

DO NOT attempt to parallel additional gages as you will cause damage to the module and void product warranty.
Install Software

Copy folder HM2085WM-Rev1_2 from ManualCD to selected folder on user computer.

Open CCW (Connected Components Workbench) and select Open.
Locate folder on hard drive and open HM2085WM-Rev1_2.ccwsln.

Output Image

Clear Tare Bit
Reset or removes tare value from module. (Used to initially setup module)

Tare Bit
Sets weigh value to zero.

Channel 1 Scale Value
Value of scale from capacity of load cell for Channel 1.

Channel 1 mV/V Setting
4 digit mV/V setting from load cell mV/V specification.

Channel 2 Scale Value
Value of scale from capacity of load cell for Channel 2.

Channel 2 mV/V Setting
4 digit mV/V setting from load cell mV/V specification.

Input Image

Channel 1 Weigh Value
Weigh value for Channel 1.

Channel 2 Weigh Value
Weigh value for Channel 2.
Variable weigh1
(* * *)
Direction: Var
Data type: DINT
Attribute: Read/Write

Variable weigh2
(* * *)
Direction: Var
Data type: DINT
Attribute: Read/Write

Variable scale_set
(* * *)
Direction: Var
Data type: DINT
Attribute: Read/Write

Variable output_bit0
(* cal mode *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable output_bit1
(* run mode *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable set_ch1trim
(* * *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable set_ch2trim
(* * *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable weighdata
(* * *)
Direction: Var
Data type:
Attribute: Read/Write
Variable output_bit2
(* clear tare ch1 *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable output_bit3
(* set tare ch1 *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable output_bit4
(* clear tare ch2 *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable output_bit5
(* set tare ch2 *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable output_bit6
(* read mv/v sets *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable output_bit7
(* read cal factor *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable output_bit8
(* save to eeprom *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable output_bit9
(* read adtrim *)
Direction: Var
Data type: BOOL
Attribute: Read/Write
Variable output_bit10
(* autocal mode *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable output_bit11
(* set ch1 scale *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable output_bit12
(* set ch2 scale *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable output_bit13
(* ch1 auto tune *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable output_bit14
(* ch2 auto tune *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable output_bit15
(* read scale sets *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable ch1mv_vset
(* *)
Direction: Var
Data type: INT
Attribute: Read/Write

Variable ch2mv_set
(* *)
Direction: Var
Data type: INT
Attribute: Read/Write
Variable samples

(*)
Direction: Var
Data type: INT
Attribute: Read/Write

Variable filtertime

(*)
Direction: Var
Data type: INT
Attribute: Read/Write

Variable mode

(*)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable msf1

(*)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable msf2

(*)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable msf3

(*)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable msf4

(*)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable msf5

(*)
Direction: Var
Data type: BOOL
Attribute: Read/Write
Variable msf6
(* *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable msf7
(* *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable extrapar
(* *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable zeroband1
(* *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable zeroband2
(* *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable zeroband3
(* *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable extpar2
(* *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable ch1_vib_on
(* *)
Direction: Var
Data type: BOOL
Attribute: Read/Write

Variable ch2_vib_on
(* *)
Direction: Var
Data type: BOOL
A complete listing of a sample ladder logic program is included at the back of this manual. Examples shown here are for reference.

Setup
Procedure

All values are 0 (default) on initial start-up. This means that all alarms are disabled. You must make the following adjustments for proper operation:

- Balance sensor input(s)
- Set Calibration numbers

1. Set to Cal Mode
2. Press Clear Tare for each channel
3. Check balance value, should be 131,000 counts

Step 2. Set Calibration Numbers
1. Set Scale to capacity of load cell
2. Set mV/V to load cell specification
3. Example:
   - 100 ton load cell, 2.025 mV/V
   - For scale set, enter 100
   - For mV/V set, enter 2025
4. Push Set CH1, Set CH2 Scale
5. Push Save to eeprom
6. Set to Run Mode

HT-400 Sensor Ohm Readings:

<table>
<thead>
<tr>
<th>Color Combination</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green-Black</td>
<td>350 ohms</td>
</tr>
<tr>
<td>Red-White</td>
<td>350 ohms</td>
</tr>
<tr>
<td>All other color combinations</td>
<td>266 ohms</td>
</tr>
<tr>
<td>All colors to Ground</td>
<td>open</td>
</tr>
<tr>
<td>Shield to Ground</td>
<td>open</td>
</tr>
</tbody>
</table>
### HM2085-WM SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backplane Power</td>
<td>24V @ 70mA</td>
</tr>
<tr>
<td>Consumption</td>
<td>5V @ 132mA</td>
</tr>
<tr>
<td>Type of input</td>
<td>Strain Gage (350 ohm, 700 ohm)</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>10k</td>
</tr>
<tr>
<td>Display Resolution</td>
<td>Up to .001% of full scale</td>
</tr>
<tr>
<td>Overall Module Accuracy</td>
<td>.01% of full scale</td>
</tr>
<tr>
<td>Module Update Time</td>
<td>2 milliseconds</td>
</tr>
<tr>
<td>Number of Channels</td>
<td>2 (isolated)</td>
</tr>
<tr>
<td>A/D Conversion Method</td>
<td>Successive Approximation - 18 bit</td>
</tr>
<tr>
<td>Normal Mode Rejection: (between +/- input)</td>
<td>116DB CMRR</td>
</tr>
<tr>
<td>Amplifier Bandwidth</td>
<td>200 kHz</td>
</tr>
<tr>
<td>Calibration</td>
<td>Software Selectable</td>
</tr>
<tr>
<td>Isolation:</td>
<td>500 VDC continuous between inputs and chassis ground, and between input and backplane</td>
</tr>
<tr>
<td>LED indicators</td>
<td>2 LED's for Power and Alarm</td>
</tr>
<tr>
<td>Recommended Cable</td>
<td>Strain Gage Cable (Helm part number 6117)</td>
</tr>
<tr>
<td>Operating Temperatures</td>
<td>0°C to 60°C (32°F to 140°F)</td>
</tr>
<tr>
<td>Hazardous Environment Classification</td>
<td>Class 1 Division 2 Hazardous Environment</td>
</tr>
</tbody>
</table>
HELM HM2085-WM & PLM  Customer Connections

CH. 1 INPUT
+ S  shield
- S
+ G
- G

CH. 2 INPUT
+ S  shield
- S
+ G
- G

NOTES:
1.) MINIMUM INPUT OHMS
    IS 350 PER CHANNEL.